2018 Fiscal Year Final Research Report
Calculus of variations centered around exponentially harmonic maps
Project/Area Number |
15K17546
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Geometry
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Omori Toshiaki 東京理科大学, 理工学部数学科, 助教 (20638225)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Keywords | 指数調和写像 / 調和写像 / 離散曲面 / グラフスペクトル |
Outline of Final Research Achievements |
Several existence theorems for exponentially harmonic maps are obtained. More precisely, an existence theorem for exponentially harmonic maps in the case that the source manifold is noncompact, and a Liouville-type theorem is also obtained for exponentially harmonic maps with bounded energy whose target has nonpositive curvature. The existence of a time-global solution to a time evolutional equation for exponentially harmonic maps into nonpositively curved manifolds has been proved. Moreover, the existence of a kind of equivariant exponentially harmonic maps between spheres has been proved under without any conditions. Also, from a viewpoint of the area of material science, some realizations of graphs in the Euclidean space, a discrete surface theory for them, and a continuous limit of their subdivisions are studied. Spectral problems of the Goldberg-Coxeter subdivisions for 3- and 4-valent finite graphs are also studied.
|
Free Research Field |
幾何解析および離散幾何解析
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,これまでのリーマン多様体間の調和写像の存在理論に対して,指数調和写像を用いるという新しい手法により,統一的な理論の理解を与えたという点において価値がある。 また,連続曲面の離散化でもなく,必ずしも面の存在を仮定しない次数3の空間グラフに対して離 散曲面論を構築した。この研究は,既存の曲面論の枠にはまらない非多面体曲面を対象にする という点で新しいものである。
|