• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

The novel treatment of ocular infections that seeks from the static state and dynamic response of the bacterial flora of ocular surface

Research Project

  • PDF
Project/Area Number 15K20261
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Ophthalmology
Research InstitutionTottori University

Principal Investigator

SASAKI Shin-ichi  鳥取大学, 医学部附属病院, 講師 (30745849)

Research Collaborator INOUE yoshitsugu  
MIYAZAKI dai  
Project Period (FY) 2015-04-01 – 2019-03-31
Keywords白内障術後眼内炎予防 / 術前減菌法 / 眼表面細菌叢動態 / 16S ribosomal DNA / 抗菌薬前房内投与 / 角膜感染症
Outline of Final Research Achievements

As a preventive measure for postoperative endophthalmitis, we established the intraoperative timely iodine irrigation method and evaluated its efficacy. Preventive measures were evaluated for efficacy in reducing incidence of endophthalmitis using network meta-analysis of previous literatures. Meta-analysis indicated that intracameral antibiotics was highly efficacious in reducing incidence of endophthalmitis. Toxic or inflammatory aspect of these intracameral antibiotics were assessed. To understand the state of the bacterial flora on the ocular surface, the dynamics of bacteria in corneal or ocular infections were evaluated using bacterial 16S r-DNA. We found 16S r-DNA quantification and sequencing analysis combined with conventional microbial testing is very effective diagnostic measure. To assess major cause of corneal infection in young subjects wearing contact lenses, we evaluated and identified a group of factors leading to contact lens-related contamination.

Free Research Field

眼科学

Academic Significance and Societal Importance of the Research Achievements

眼科領域における新たな眼感染症の治療法の確立を目指して検討を行って得られた知見は、以下の点で学術的意義や社会的意義があると思われた。
即ち白内障手術における術後眼内炎予防に、消毒薬の眼内毒性、抗菌薬の細胞への毒性や炎症惹起反応を考慮して、有効かつ安全性の高いプロトコールが立案できる可能性があること。
また感染性角膜炎の診断の手順として16S ribosomal DNAのシークエンシングによる細菌の同定の知見をもとに、人工知能モデルを用いてさらに簡便な診断方法を確立できる可能性があることである。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi