2020 Fiscal Year Final Research Report
Elucidation of hub phenomenon occurring in large-scale data and its application to bio-medical data
Project/Area Number |
16H02821
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Multimedia database
|
Research Institution | Yamagata University (2017-2020) National Institute of Genetics (2016) |
Principal Investigator |
Hara Kazuo 山形大学, 理学部, 准教授 (30467691)
|
Co-Investigator(Kenkyū-buntansha) |
鈴木 郁美 長崎大学, 情報データ科学部, 准教授 (20637730)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Keywords | 近傍検索 |
Outline of Final Research Achievements |
We have developed a method to suppress the appearance of hubs by converting the distance between data so that the data density is uniform. In particular, as an important graph construction method in graph-based semi-supervised learning, we proposed a method that does not have hubs and does not require an excessive reduction in the number of edges. Furthermore, when we investigated whether hubness occurred in bio-sequence data i.e., whether a specific sequence was similar to many other sequences, we confirmed that hubness occurred.
|
Free Research Field |
情報学
|
Academic Significance and Societal Importance of the Research Achievements |
Radovanovic et al. JMLR 2010によって「(グラフ上ではなく)空間上のハブ」に起因する問題が提起されて以来,ハブを解消または利用する方法(例えば新たなグラフィカルモデルやクラスタリング法)の開発,および,各ドメインタスクへの適用は,国際的な競争となりつつある.取り分け,音楽情報検索におけるハブを取り除く研究は,オーストリアの研究グループOFAIが世界をリードしている(Schnitzer et al. JMLR 2012).本研究の成果は,医療生命系データにおけるハブの問題を,世界に先駆けて解決する土台となるものである.
|