• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Elucidation of hub phenomenon occurring in large-scale data and its application to bio-medical data

Research Project

  • PDF
Project/Area Number 16H02821
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Multimedia database
Research InstitutionYamagata University (2017-2020)
National Institute of Genetics (2016)

Principal Investigator

Hara Kazuo  山形大学, 理学部, 准教授 (30467691)

Co-Investigator(Kenkyū-buntansha) 鈴木 郁美  長崎大学, 情報データ科学部, 准教授 (20637730)
Project Period (FY) 2016-04-01 – 2020-03-31
Keywords近傍検索
Outline of Final Research Achievements

We have developed a method to suppress the appearance of hubs by converting the distance between data so that the data density is uniform. In particular, as an important graph construction method in graph-based semi-supervised learning, we proposed a method that does not have hubs and does not require an excessive reduction in the number of edges. Furthermore, when we investigated whether hubness occurred in bio-sequence data i.e., whether a specific sequence was similar to many other sequences, we confirmed that hubness occurred.

Free Research Field

情報学

Academic Significance and Societal Importance of the Research Achievements

Radovanovic et al. JMLR 2010によって「(グラフ上ではなく)空間上のハブ」に起因する問題が提起されて以来,ハブを解消または利用する方法(例えば新たなグラフィカルモデルやクラスタリング法)の開発,および,各ドメインタスクへの適用は,国際的な競争となりつつある.取り分け,音楽情報検索におけるハブを取り除く研究は,オーストリアの研究グループOFAIが世界をリードしている(Schnitzer et al. JMLR 2012).本研究の成果は,医療生命系データにおけるハブの問題を,世界に先駆けて解決する土台となるものである.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi