2020 Fiscal Year Final Research Report
Statistical inference and empirical study on the measurement of risk and its propagation
Project/Area Number |
16H03605
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Economic statistics
|
Research Institution | Osaka University |
Principal Investigator |
OYA Kosuke 大阪大学, 経済学研究科, 教授 (20233281)
|
Co-Investigator(Kenkyū-buntansha) |
新谷 元嗣 東京大学, 大学院経済学研究科(経済学部), 教授 (00252718)
高橋 慎 法政大学, 経営学部, 准教授 (20723852)
|
Project Period (FY) |
2016-04-01 – 2021-03-31
|
Keywords | リスク / ボラティリティ / 高頻度データ |
Outline of Final Research Achievements |
We conducted research on statistical methods for detecting potential risk events in financial markets, and research on how shocks caused by such risk events affect other economic variables. Regarding the research on the statistical detection of potential risk events, it was shown that the sequential test method developed for macroeconomic variables observed at monthly and daily frequencies can be applied to high-frequency data. Regarding the research on risk propagation, we proposed the development of a statistical method for frequency wise decomposition of causality and impulse responses, which are statistical inference methods for multivariate time series models, and a robust model construction method.
|
Free Research Field |
計量経済学
|
Academic Significance and Societal Importance of the Research Achievements |
金融・資本市場を不安定化させる可能性のあるリスク事象をあらかじめ察知することができれば,金融監督当局や証券取引所などの市場関係者が,経済社会に起こりうる社会的な損失を軽減させる措置を発動することも可能となる。近年の市場環境では,市場参加者自らがコントロールできない,例えば量的緩和縮小や政策金利変更といったリスク事象を事前に予想し,起こりうる変化に関して適切な備えをすることはますます重要なテーマとなっている。
|