• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Automated Multimodal Diagnostic System of Social Infrastructures by Inspection Experts' Skill Extraction

Research Project

  • PDF
Project/Area Number 16H06680
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Perceptual information processing
Research InstitutionThe University of Tokyo

Principal Investigator

FUJII Hiromitsu  東京大学, 大学院工学系研究科(工学部), 特任講師 (30781215)

Research Collaborator ASAMA Hajime  東京大学, 大学院工学系研究科, 教授 (50184156)
YAMASHITA Atsushi  東京大学, 大学院工学系研究科, 准教授 (30334957)
Im Jonghoon  東京大学, 大学院工学系研究科
Kasahara Jun Younes Louhi  東京大学, 大学院工学系研究科
YANAGIHARA Yoshitaka  東急建設株式会社
NAKAMURA Satoru  東急建設株式会社
TAKAHASHI Yusuke  東急建設株式会社
Project Period (FY) 2016-08-26 – 2018-03-31
Keywordsインフラ点検 / 自動診断 / センサ情報処理
Outline of Final Research Achievements

Aged deterioration of social infrastructure is rapidly getting serious. At conventional inspection sites, hammering tests have been carried out by skilled inspectors. At present, for safety and security, highly reliable automatic diagnostic technologies which replace hammering tests by the skilled inspectors are urgently required.
In this research, in order to realize high efficiency, high accuracy of diagnosis, and robustness against difference inspection targets in different environments, we aim to construct an automatic diagnosis system using multimodal signal. We worked on the following two approaches, and achieved the system construction and verification by experiments. 1) Improvement of robustness against differences in inspection targets and environments by using knowledge and working protocol of skilled inspectors. 2) Detection of crack direction against surface of the concrete using multimodal information obtained from acoustic sensors and a visual sensor with a laser scanner.

Free Research Field

音響など多種センサ信号と機械学習を用いた社会インフラの自動診断,およびコンピュータビジョン

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi