• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

The study of the common learning abilities of students across subject -Practical check by big data analysis

Research Project

  • PDF
Project/Area Number 16K01106
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Educational technology
Research InstitutionAichi University (2018-2022)
University of Yamanashi (2016-2017)

Principal Investigator

SATO Masahisa  愛知大学, 公私立大学の部局等, 研究員 (30143952)

Co-Investigator(Kenkyū-buntansha) 加藤 竜哉  愛知大学, 公私立大学の部局等, 研究員 (70624542)
湯川 治敏  愛知大学, 地域政策学部, 教授 (40278221)
Project Period (FY) 2016-04-01 – 2023-03-31
Keywords共通共通学習特性特性 / 学習特性群団 / 特性ベクトル / 潜在的基礎学力 / 思考・判断・表現力・計算力・理解力 / 潜在能力 / 学習指導 / 代数的手法
Outline of Final Research Achievements

The main purpose in this research is to find the common learning characteristics algebraically by using characteristic vectors. We have created algebraic method to choose basic abilities equipped but hidden to individual student, which has been difficult to be done by the known methods until nowadays. Learning ability and basic skill with respect to each subject appear in its own way, but our survey made it possible to choose and find the common learning characteristics as being the origin of these appearances. Furthermore, we can apply our algebraic methods using characteristic vectors to verify the validity of the known learning characteristics and these verifications have possibilities to create a new standpoint of view in addition to them.

Free Research Field

数学 教育工学

Academic Significance and Societal Importance of the Research Achievements

テストを単に点数だけで評価するのでなく、解答の質に注目し質を見る手法を与えたことは、個々の学習特性を考慮した教育指導を教員に可能にする大きな意義を持つ。
本研究の応用として、思考・判断・表現という現在の教育で重要視されている学習特性の調査に応用し、この能力は教科・科目に依存するものでなく、また、それらの能力は独立して伸びているのでなく互いにバランスを取りながら伸びていることが示された。この知見が得られたことで、今後の教育はより総合的な学力を目指す方向に進むべきであるという指針が明確になり、教育に携わる関係者に大きなインパクトを与えるであろう。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi