2018 Fiscal Year Final Research Report
Disaggregate Attribution Analysis on Web Advertising
Project/Area Number |
16K03972
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Commerce
|
Research Institution | Gunma University (2018) Nagasaki University (2016-2017) |
Principal Investigator |
Takahashi Kei 群馬大学, 数理データ科学教育研究センター, 准教授 (70595280)
|
Research Collaborator |
Hirai Hirohide
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 広告効果 / 心理的効果 / ベイズ推定 |
Outline of Final Research Achievements |
This study develops a hidden Markov model that has hidden and discrete states of consumers' attitude for advertisement. In this model, we consider three psychological effects on advertisement, forgetting, wear-in and wear-out effects. We apply this model for data at the EC site. As a result of analysis, sign conditions on parameters in psychological effects. Additionally, we reveal that there exists little wear-in effects in this EC site data. Secondly, we conduct attribution analysis based on our model. Consequently, we get different attribute allocation from that without considering psychological effects.
|
Free Research Field |
マーケティング・サイエンス
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,Webサイト等へのアクセス履歴データにより,従来集計的な把握に留まっていた心理的効果,具体的には忘却効果,刷込み効果,擦切れ効果について非集計的に存在を把握することができた.また,Web広告において多用されていたアフィリエイトやリターゲティング広告について,その広告を"踏んだ"ことによる離脱を考慮すると,最終目標への貢献度が低いことが分かった.
|