2018 Fiscal Year Final Research Report
Device of an evaluation method for the developmental process of musical expression in early childhood based on the elements of movement
Project/Area Number |
16K04579
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Education
|
Research Institution | Osaka Shoin Women's University |
Principal Investigator |
Sano Mina 大阪樟蔭女子大学, 児童教育学部, 教授 (00341785)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 幼児の音楽的表現の動作解析 / MEB(音楽的表現育成)プログラム / 3Dモーションキャプチャー / 動作特徴量 / 機械学習 / 音楽的発展度 / 評価方法 / 分類器 |
Outline of Final Research Achievements |
In this study, the body movement of musical expression in early childhood was analyzed utilizing 3D motion capture (MVN system) in five facilities taking various childcare forms such as nursery schools, kindergartens and a certified facility. Developmental characteristics in line with the practical phase of MEB (Musical Expression Bringing-up) program were more precisely inspected through quantitative analysis. Movement features extracted based on the statistical analysis were used to conduct machine learning. The author devised an evaluation method to categorize developmental degree of musical expression into three stages of by multiple model classification and discrimination. As a result of using four kinds of classifiers, the classification accuracy of multilayer perceptron of neural network was relatively high. The developmental degree of musical expression in early childhood was closely related to the moving distance of pelvis and the moving average acceleration of right hand.
|
Free Research Field |
幼児教育学、音楽教育学
|
Academic Significance and Societal Importance of the Research Achievements |
幼児の音楽的諸要素の認識と身体的な動きとの関係性について、この研究で、より精確な科学的根拠を提示することができた。機械学習を用いた音楽的表現の発展度を3段階に評価する方法についても、国際ジャーナル、国内外の学会発表や学術論文、公開講座にて発信した。この機械学習による音楽的発展度の評価の方法により、客観的な判別基準で音楽的表現の発達過程が捉えられるため、幼児の音楽教育の質的向上に役立ち、個別の幼児に合った音楽経験を提供していくことができるという点でも意義があると考えられる。
|