2021 Fiscal Year Final Research Report
Compactifications of Mumford-Tate domains and log geometry
Project/Area Number |
16K05093
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Hitotsubashi University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2022-03-31
|
Keywords | ホッジ理論 |
Outline of Final Research Achievements |
We construct various compactifications of the Mumford-Tate domain (variants of the period domains with the actions of algebraic groups) as moduli spaces of mixed log Hodge structures endowed with the action of algebraic groups. In this process, the compactification of nilpotent orbits, the compactification by SL(2)-orbits and the compactification by Borel-Serre orbits are constructed, and the fundamental diagram including these spaces is established.
|
Free Research Field |
数論幾何
|
Academic Significance and Societal Importance of the Research Achievements |
ある数学的対象全部の集合に自然な空間構造を入れたものをモジュライ空間といい、モジュライ空間を調べやすくするために無限遠点を追加してコンパクト化することが重要である。log 幾何は各種モジュライ空間のコンパクト化を構成する広く一般的な枠組みを提供する。本研究では log 幾何を応用し、従来構成されていなかった、混合マンフォード-テイト領域のコンパクト化に成功した。
|