• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

On resolution of singularities of algebraic varieties in positive characteristic

Research Project

  • PDF
Project/Area Number 16K05100
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionChubu University (2019)
Kyoto University (2016-2018)

Principal Investigator

KAWANOUE Hiraku  中部大学, 工学部, 准教授 (50467445)

Project Period (FY) 2016-04-01 – 2020-03-31
Keywords代数幾何学 / 特異点解消 / IFP
Outline of Final Research Achievements

The target of this research project is the problem of resolution of singularities. The problem of resolution of singularities is one of the most important problem in algebraic geometry. It is established in characteristic 0, in any dimension, due to Professor Heisuke Hironaka. However, it is still widely open in positive characteristic. we introduced the new approach, called IFP, to solve this important problem. I have developed IFP with the coworker Kenji Matsuki, a professor in Purdue university. During the period of this research project, we established two new proof for the resolution of singularities for surfaces, from the view point of IFP. We also have some new input for 3-fold case, though which is still work in progress.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

この研究では本研究者が提案し推進しているIFPというアプローチを用いて曲面の特異点解消について新しい証明を与えた. この結果は2通りの意義がある. 一つは, これが不変量の減少を見ることで特異点解消を確立する構成的な証明である点である.曲面の特異点解消の構成的な証明はこれまで知られていなかった. もう一つの意義は, 一般次元の特異点解消の為のプログラムであるIFPの有効性を示したという点である.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi