2021 Fiscal Year Final Research Report
Degenerations of Calabi-Yau manifolds and mirror symmetry
Project/Area Number |
16K05105
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Gakushuin University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2022-03-31
|
Keywords | カラビ・ヤウ多様体 / ミラー対称性 / 周期積分 / モジュライ空間 / 多変数超幾何微分方程式 |
Outline of Final Research Achievements |
From the study of string theory in theoretical physics, certain special manifolds, called Calabi-Yau manifolds, were attracted attentions of many researchers, and around 1990, a mysterious symmetry called "mirror symmetry" was discovered in world of Calabi-Yau manifolds. Since the discovery of the mirror symmetry, extensive study toward mathematical understanding of the symmetry has been done. Now, we have two approaches to study the symmetry; one is categorical and the other is geometric method. In this research project, PI has made achievements in constructing explicit and interesting Calabi-Yau manifolds aiming to reveal mirror symmetry. These have been done by developing necessary methods to analyze behavior of some integral called period integral.
|
Free Research Field |
複素幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
カラビ・ヤウ多様体のミラー対称性は、その発見から30年近くが経過し、関連する数学の分野に多数の影響を与えてきました。しかしながら、対称性の数学的の完全な理解には至っておらず、現在も不思議な対称性と思われています。このような対称性が現れる興味深いカラビ・ヤウ多様体を構成することは、ミラー対称性を深く理解する上で大切な役割を果たします。また、具体的な例を構築すると同時に、それらを調べる手段・方法を整備して確立することは、ミラー対称性の解明に限らず、派生する様々な数学の問題への応用に寄与するもので、数学の大切な蓄積となります。
|