• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Canonical forms in geometry and its applications

Research Project

  • PDF
Project/Area Number 16K05128
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKyoto Institute of Technology

Principal Investigator

Ikawa Osamu  京都工芸繊維大学, 基盤科学系, 教授 (60249745)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywords対称空間 / 超極作用 / Hermann作用 / 対称三対
Outline of Final Research Achievements

・For a given compact connected Lie group and an involution on it, we can define a hyperpolar action, which is called a σ-action. We studied the orbit space and the properties of the action using a symmetric triad. The result is a natural extension of maximal torus theory.
・There exists a one to one correspondence between the set of compact symmetric triads and that of pseudo-Riemannian symmetric pairs, which is a generalization of Cartan’ duality which state a one to one correspondence between the local isomorphic classes of Riemannian symmetric spaces of compact type and the isometric classes of Riemannian symmetric spaces of noncompact type. Thus we call it the generalized duality. We found the applications of generalized duality to Wirtinger inequality and backward Wirtinger inequality.

Free Research Field

数物系科学 数学 幾何学

Academic Significance and Societal Importance of the Research Achievements

超極作用,特にHermann作用,は重要な研究対象であるが,これまで詳しく調べられていたのはコンパクト対称空間へのイソトロピー群の作用であった.コンパクト対称空間へのイソトロピー群の作用の拡張であるHermann作用について詳しく調べることは,今後の幾何学における標準形理論の発展の基礎になる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi