• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Orderings in 3-manifold groups

Research Project

  • PDF
Project/Area Number 16K05149
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionHiroshima University

Principal Investigator

Teragaito Masakazu  広島大学, 教育学研究科, 教授 (80236984)

Project Period (FY) 2016-04-01 – 2020-03-31
Keywords不変順序 / 3次元多様体 / 共役ねじれ元 / 正規生成元 / 正規閉包
Outline of Final Research Achievements

We proposed a conjecture which claims that a 3-manifold group is not bi-orderable if and only if it admits a generalized torsion element. Although this is still open, we solved it for various families of 3-manifolds such as Seifert fibered manifolds. As a byproduct, we found a way to construct generalized torsion elements for Fibonacci groups and their generalizations. Also, we studied the normal closures of slope elements in knot groups and their inclusion relation.

Free Research Field

トポロジー

Academic Significance and Societal Importance of the Research Achievements

低次元トポロジーにおいて,最も注目されているのは3次元多様体といっても過言ではない.本研究では,3次元多様体の基本群に注目し,群論的な問題に対してトポロジーの成果を用いて取り組んだ.へガード・フロア理論からの要請もあって,基本群が許容する不変順序の研究は喫緊の課題であり,引き続き国内外における研究継続が望まれる.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi