• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Combinatorics study of zero-dimensional systems - beyond Bratteli-Vershik systems

Research Project

  • PDF
Project/Area Number 16K05185
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionNagoya Keizai University

Principal Investigator

Shimomura Takashi  名古屋経済大学, 経済学部, 教授 (30440770)

Project Period (FY) 2016-04-01 – 2019-03-31
KeywordsBratteli-Vershik system / zero-dimensional system / subshift / minimal / topological rank / residually scrambled
Outline of Final Research Achievements

My plan was to extend the case study of minimal homeomorphic zero-dimensional systems, and to construct chaotic cases.I could extend the notion of topological rank, showing that the natural extensions have no greater ranks. I could characterize substitution maps that create minimal subshifts. Rank 2 proximal Cantor systems were residually scrambled.
Apart from minimality, finite rank Bratteli-Vershik systems were expansive if they do not have odometers. More importantly, all homeomorphic zero-dimensional systems had non-trivial Bratteli-Vershik representation, including the basic sets.

Free Research Field

力学系,組み合わせ論的零次元系

Academic Significance and Societal Importance of the Research Achievements

組み合わせ論的零次元系の理論は,C*環のある程度計算可能な具体的議論として,とても重要なものです.何故なら,C*環の理論は,量子場の理論と深く関連しており,その量子場の理論はもはや研究の枠を越え,量子コンピュータの実現という,極めて重要な社会的目標を持つものだからです.
もっとも,私の研究成果は,基礎的なものに留まります.Bratteli--Vershik表現というものは,位相的ベルヌーイ系を含む,とてつもなく広大な零次元系達の class を,上記C*環の計算可能な構造と深く関連させることができるものです.私の研究は,このBratteli--Vershik表現についての,基礎的な考察です.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi