• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Multilinear harmonic analysis and the singularity

Research Project

  • PDF
Project/Area Number 16K05201
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionOsaka University

Principal Investigator

Tomita Naohito  大阪大学, 理学研究科, 准教授 (10437337)

Project Period (FY) 2016-04-01 – 2020-03-31
Keywords多重線形作用素 / 擬微分作用素 / フーリエ乗法作用素
Outline of Final Research Achievements

In the field of harmonic analysis, the research to extend the theory for linear operators to the one for multilinear operators has been actively studied since around 2000. Nowadays this topic is often called multilinear harmonic analysis. Multilinear harmonic analysis is not just a generalization of linear theory, it is also a challenging problem for harmonic analysis, and it has the potential for the development of the study of partial differential equations from an application perspective. I studied how to approach operators with strong singularity such as bilinear Hilbert transform. I also obtained the results on the boundedness of bilinear pseudo-differential operators.

Free Research Field

実解析学

Academic Significance and Societal Importance of the Research Achievements

宮地晶彦氏(東京女子大学)との双線形擬微分作用素に関する研究は,V. Naibo 氏と A. Thomsom 氏の J. Math. Anal. Appl. (2019) の論文の中で,基本的な枠組みにおける有界性問題を終わらせたと紹介されており,価値あるものと信じている.また,L. Grafakos 氏,宮地晶彦氏との多重線形フーリエ乗法作用素の共同研究では,有界性を保証するためのマルチプライヤーに課すべき最適な正則性条件を決定することに成功した.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi