• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Characterization of hyperbolic operators with the coefficients of the principal part depending only on the time variable for which the Cauchy problem is well-posed

Research Project

  • PDF
Project/Area Number 16K05222
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of Tsukuba

Principal Investigator

Wakabayashi Seiichiro  筑波大学, 数理物質系(名誉教授), 名誉教授 (10015894)

Project Period (FY) 2016-04-01 – 2021-03-31
Keywords双曲型作用素 / コーシー問題 / C∞適切性 / 超局所解析
Outline of Final Research Achievements

In the preceding researches I obtained sufficient conditions of C∞ well-posedness of the Cauchy problem for higher-order hyperbolic operators with double characteristics satisfying the conditions that the coefficients of the principal parts are real analytic functions of the time variable. And I showed that these sufficient conditions are also necessary when the space dimension is less than 3 or the coefficients of the principal parts are semi-algebraic functions ( e.g., polynomials ) of the time variable.
I also considered the Cauchy problem for higher-order hyperbolic operators with triple characteristics whose coefficients are real analytic functions of the time variable. And I obtained similar results concerning the characterization of C∞ well-posedness.

Free Research Field

数学・基礎解析学

Academic Significance and Societal Importance of the Research Achievements

双曲型作用素に対するコーシー問題の C∞適切性の特徴付けは、偏微分方程式論における主要なテーマの1つであり、これまでに多くの研究があるが、未だ満足のいく結果は得られていないのが現状である。報告者が、主部の係数が時間変数にのみに依存する特別な枠組みではあるが、2重特性的である場合に C∞適切性の特徴付けを与えたことは、今後のこの分野の研究・発展に貢献するものと期待される。また3重特性的な場合を扱うために、subprincipal symbol を一般化して、sub-sub-principal symbol を初めて定義して、係数が時間変数のみに依存する場合に、C∞適切性の特徴付けを与えた。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi