2018 Fiscal Year Final Research Report
Study of parabolic systems with discontinuous nonlinearities arising in game theory
Project/Area Number |
16K05226
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical analysis
|
Research Institution | University of Toyama |
Principal Investigator |
DEGUCHI Hideo 富山大学, 大学院理工学研究部(理学), 准教授 (30432115)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | ゲーム理論 / 放物型方程式 / 不連続な非線形項 / 安定性 / 進行波解 |
Outline of Final Research Achievements |
The concept of Nash equilibrium has played a central role as a solution concept in game theory. However, when a game has multiple Nash equilibria, the players face a problem which equilibrium they should play. To treat this problem, Hofbauer(1999) introduced the concept of spatial dominance by means of the stability of a constant stationary solution, which corresponds to a Nash equilibrium, to a reaction-diffusion system. That a Nash equilibrium is spatially dominant means that if it initially prevails on a large finite part of the space, then it takes over the whole space in the long run. In this research project we investigated the selection criterion of spatial dominance.
|
Free Research Field |
偏微分方程式論
|
Academic Significance and Societal Importance of the Research Achievements |
空間支配の概念は、危険支配やナッシュ積などの均衡選択の他の重要な概念と密接に関係していることが知られているが、一般のゲームに対する空間支配による均衡選択の基準は、まだ知られていない。また、空間支配の概念を導入する際に用いた、不連続な非線形項を持つ放物型方程式系に対する初期値問題の解の存在と一意性の問題も、特定のゲームの場合を除いて未解決である。本研究では、これらの問題を部分的に解決することができた。
|