2020 Fiscal Year Final Research Report
On regularity and uniqueness of solutions to partial differential equations in Fluid Mechanics and Harmonic Analysis
Project/Area Number |
16K05228
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical analysis
|
Research Institution | Shinshu University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2021-03-31
|
Keywords | 関数方程式論 / 偏微分方程式 / 流体力学 |
Outline of Final Research Achievements |
We founded the weakest norm that satisfies the Brezis-Gallouet-Wainger type inequality, under some conditions. As an application of the Brezis-Gallouet-Wainger type inequality, we gave Beale-Kato-Majda type blow-up criteria of smooth solutions to the 3-D Navier-Stokes equations in unbounded domains. For example, we proved that, if [0,T) is the maximal interval of existence of a smooth solution u to the Navier-Stokes equations, then int_(0,T) || rot u(s)||_{bmo}ds= infty. Moreover, we improved this blow-up criterion by using a space of Morrey type.
|
Free Research Field |
数学
|
Academic Significance and Societal Importance of the Research Achievements |
水や油などの縮まない流体の運動を記述するNavier-Stokes方程式の解の性質に関する研究をおこなった。 この方程式は数学のみならす、物理学、工学、気象学等の様々な自然科学の分野で利用される極めて重要な方程式である。 また、同方程式の滑らかな解の大域存在は、数学の7つの未解決問題(いわいるミレニアム問題)に選ばれており、同方程式の研究は数学分野においても重要視されていることがわかる。
|