• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Elucidation of reaction mechanism of hydrogenase by neutron crystallography

Research Project

  • PDF
Project/Area Number 16K07283
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Structural biochemistry
Research InstitutionNational Institutes for Quantum and Radiological Science and Technology

Principal Investigator

Tamada Taro  国立研究開発法人量子科学技術研究開発機構, 量子生命科学領域, グループリーダー(定常) (50391248)

Co-Investigator(Kenkyū-buntansha) 栗原 和男  国立研究開発法人量子科学技術研究開発機構, 量子生命科学領域, 上席研究員(定常) (50354890)
Project Period (FY) 2016-04-01 – 2020-03-31
Keywordsタンパク質 / 立体構造 / X線・中性子 / 水素
Outline of Final Research Achievements

Hydrogenases catalyze the reversible oxidation of molecular hydrogen and play an essential role in energy metabolism in many microorganisms. Furthermore, hydrogenases are interesting not only for basic research but also for clean energy applications since hydrogen is a sustainable and environmentally friendly energy source. [NiFe] hydrogenase contains several metal centers, including the bimetallic Ni-Fe active site, iron-sulfur clusters, and a Mg2+ ion. We determined new conformation of Ni-A type in the oxidized form of hydrogenase from Desulfovibrio vulgaris Miyazaki F by X-ray crystallography considering anomalous dispersion. Neutron structural analysis of the oxidized form was almost completed at 2.0 Å resolution. In addition, we established the freezing method of large crystals of hydrogenase under anaerobic conditions by confirming the uniformity of crystal mosaicness. Neutron structural analyses of the reduced form (active form) are in progress.

Free Research Field

構造生物学

Academic Significance and Societal Importance of the Research Achievements

ヒドロゲナーゼは水素の合成・分解を両方向に常温・常圧で触媒する特長を有している。水素原子の直接観察に長けた中性子を軸にした構造解析によるヒドロゲナーゼの反応メカニズムの全原子レベルでの全容解明を目指して研究を実施した。Desulfovibrio vulgaris Miyazaki F由来ヒドロゲナーゼ酸化型の中性子結晶構造解析をほぼ完了し、還元型についても実施の道筋をつけることが出来た。精緻な構造情報に基づいたヒドロゲナーゼ模倣化合物や高機能ヒドロゲナーゼの作成を通じて、クリーンエネルギー実現、さらには温室効果ガス削減による環境問題解決が期待される。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi