• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Development of digital mammography diagnostic support system

Research Project

  • PDF
Project/Area Number 16K10266
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Radiation science
Research InstitutionTohoku University

Principal Investigator

Ishibashi Tadashi  東北大学, 医学系研究科, 名誉教授 (40151401)

Co-Investigator(Kenkyū-buntansha) 本間 経康  東北大学, 医学系研究科, 教授 (30282023)
森 菜緒子  東北大学, 大学病院, 助教 (90535064)
Project Period (FY) 2016-04-01 – 2019-03-31
Keywordsデジタルマンモグラフィ
Outline of Final Research Achievements

Mammographic breast cancer screening is a cost-effective way to improve survival. However, diagnostic accuracy greatly varies depending on experience of the doctor. CAD using AI technology is attracting attention as a diagnostic support method for doctors. We constructed a database of over 20,000 normal breast and cancer cases and succeeded in developing CAD using deep learning. We made a diagnostic workstation equipped with this software, and confirmed that the detection rate of calcified lesions and mass lesions was superior to existing CAD. At the same time, we developed a report management support software that can accurately measure breast tissue and calculate breast cancer risk factors from past medical history and family history, with a view to future personalized medicine.

Free Research Field

画像診断

Academic Significance and Societal Importance of the Research Achievements

日本のマンモグラフィ検診では精度管理のために医師2名による読影を義務化している。医師の負担増、経費増などで日本では検診率が低く、目標に達していない。精度の悪い検診では要精査率を高めてしまい、医療機関での精密検査などの医療費負担増も問題となっている。そのためにも経験豊富な専門医と同等のCADの開発、普及が社会的ニーズとなっている。近年の深層学習法を用いたAICADに新たに期待されるようになってきた。我々が開発したCAD搭載の読影支援システムは、既存のCADより優れた感度、特異度を有し、これらの社会的ニーズの答えることができると思われる。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi