• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Establishment of rapid detection and epidemiological method of Multi-drug resistant bacteria in urinary tract infection

Research Project

  • PDF
Project/Area Number 16K11047
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Urology
Research InstitutionKobe University

Principal Investigator

Shigemura Katsumi  神戸大学, 保健学研究科, 准教授 (00457102)

Co-Investigator(Kenkyū-buntansha) 大澤 佳代  神戸大学, 保健学研究科, 准教授 (50324942)
荒川 創一  神戸大学, 医学研究科, 客員教授 (70159490)
白川 利朗  神戸大学, 科学技術イノベーション研究科, 教授 (70335446)
Research Collaborator Kitagawa Koichi  
Yamamichi Fukashi  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords尿路感染症 / 薬剤耐性菌
Outline of Final Research Achievements

We studied MALDI-TOF-MS using the principle of Mass spectrometry for the purpose of rapid diagnosis of urinary tract infections, and demonstrated improved method for gram-positive bacteria where we had troubles for their detection, and presented the paper. Next, we performed the basic experiment Multiple-Locus Variable Number Tandem-Repeat Analysis: MLVA for rapid epidemiological diagnosis of Escherichia coli and showed the efficacy on that purpose. That is, using the carbapenem-resistant E. coli (n=23) and extended- spectrum beta- lactamase ESBL producing E. coli (n=67) and we extracted those bacteria with different repeat number in every region and decided repeat number. Then, it was diagnosed as closely related bacteria from tree diagram.

Free Research Field

泌尿器科学

Academic Significance and Societal Importance of the Research Achievements

近年の薬剤耐性細菌の増加に伴い、かつ国家レベルでの抗菌薬使用制限、適正使用指導の徹底が求められている。本MALDI-TOF MSの研究では上記の2方法にて尿路感染症の原因菌の迅速診断法の確立し、従来の尿培養検査よりは数日以上早く適切な治療を開始できることを提言できた。またMLVA法においては、特に疫学調査としての菌の伝播形式を迅速に視覚的に診断できる方法を尿路感染症の主要な原因菌である、それも薬剤耐性の大腸菌を用いて確立した。これにより特に院内感染の早期診断に役立ち、一刻も早い解決策の立案に貢献できる。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi