• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Constructing structure theories of quandles and discrete symmetric spaces

Research Project

  • PDF
Project/Area Number 16K13757
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionOsaka City University (2018)
Hiroshima University (2016-2017)

Principal Investigator

Tamaru Hiroshi  大阪市立大学, 大学院理学研究科, 教授 (50306982)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywordsカンドル / 対称空間
Outline of Final Research Achievements

We obtained results on disconnected flat quandles and on symmetry-commutative subsets in quandles. In the former, we construct disconnected flat quandles from any graph, and proved that the constructed quandle is homogeneous if and only if the graph is vertex-transitive. In the latter, we defined the notion of symmetry-commutative subsets in quandles, and determined them for many cases, such as oriented Grassmannians and compact classical Lie groups.

Free Research Field

幾何学

Academic Significance and Societal Importance of the Research Achievements

本研究では,対称空間論を参考として,様々な概念や手法をカンドルに対して導入し,その性質を明らかにしている。対称空間論とカンドルを結びつける研究は独自のものであり,新たな研究領域を開拓しているものだと考える。さらにカンドルの研究を通して,対称空間の研究にも新たな知見が付け加えられている。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi