• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

New technology development of cytological examination using computer analytical methods for early detection of malignant mesothelioma.

Research Project

  • PDF
Project/Area Number 16K15327
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Laboratory medicine
Research InstitutionShinshu University

Principal Investigator

Kimura Fumikazu  信州大学, 学術研究院保健学系, 講師 (10621849)

Co-Investigator(Kenkyū-buntansha) 太田 浩良  信州大学, 学術研究院保健学系, 教授 (50273107)
佐藤 之俊  北里大学, 医学部, 教授 (90321637)
Project Period (FY) 2016-04-01 – 2020-03-31
KeywordsMalignant mesothelioma / Cytology / Effusion / Image analysis / Texture analysis / Support vector machine / Cross validation
Outline of Final Research Achievements

In this research, we revealed that features were extracted using signal intensity in whole nuclear area, morphological features, GLCM, chromatin ratio and signal intensity in euchromatin and heterochromatin region using Ohtsu thresholding, Local binary pattern, Tamura features, gaussian and gabor filter indicated characteristic of nuclear atypism of mesothelioma. Moreover, in the LSVM discriminant analysis, the accuracies of these texture analysis calculated using these features were 80-100%. Accuracy was calculated using the gabor filter among these texture methods showed the highest value. These methods seem to be a very useful for carrying out routine cytological examinations. We would like to effectively use the software created in this time for the routine cytological examinations.

Free Research Field

細胞診断、細胞周期制御因子、DNA複製関連蛋白、テクスチャ解析、機械学習

Academic Significance and Societal Importance of the Research Achievements

細胞診検査は体の様々な部位から細胞を採取して、顕微鏡を用いて細胞の形から疾患を判断できる優れた検査法であるが、悪性中皮腫など一部の疾患は、ときに癌ではない炎症性の疾患などと判別が困難な場合がある。近年悪性中皮腫の罹患率が増加している中、早期発見・治療が重要になってくる。そこで人の目では判断が難しい悪性中皮腫をコンピュータの目で、早期発見、正確な診断を行うことで患者に寄与する。またこの方法が確立すれば、他の疾患の判別にも応用が可能になる。今回の研究成果によって、細胞診検査の補助診断ツールとして悪性中皮腫の早期にかつ正しい診断が行えるようになったと確信している。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi