• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Development of the training method based on the brain activation pattern

Research Project

  • PDF
Project/Area Number 16K16649
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic / Social brain science
Research InstitutionNational Institute of Information and Communications Technology

Principal Investigator

Satoshi Hirose  国立研究開発法人情報通信研究機構, 脳情報通信融合研究センター脳情報通信融合研究室, 研究員 (70590058)

Project Period (FY) 2016-04-01 – 2020-03-31
KeywordsfMRI / 脳 / 個人差 / 学習法 / 脳機能解析
Outline of Final Research Achievements

This study aimed to develop a novel training method, where a person imitate brain activation pattern of experts during a particular task, such as mental calculation, in order to improve his/her task performance. For the purpose, brain activations during the task (mental calculation) were measured by means of functional magnetic resonance imaging (fMRI). Task performance is also measured outside the scanner. The relation between brain activation patterns and task performance is extracted by using machine learning techniques. However, we could not extract robust index of the task performance from the fMRI signal. To achieve the goal, it is essential to develop of noise reduction method for fMRI signal and robust and fine-tuned machine learning methods for analyzing fMRI data, and perform larger scale experiment.

Free Research Field

脳科学

Academic Significance and Societal Importance of the Research Achievements

本研究は脳の使い方の個性を体系的、明示的に捉える方法を提案し、それを基にまったく新しい精神活動や運動のトレーニング法を提案するための初めての試みであった。本研究において、被験者数が少なかったなどの原因により、fMRI信号から学習に使用するのに十分な精度で課題の成績と関連する脳活動のパターンを同定することができなかったが、今後、解析法の開発や、大規模実験の実施により、上記目標が達成できる可能性を示唆した。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi