2018 Fiscal Year Final Research Report
The stable set in a generalized assginment problem
Project/Area Number |
16K17079
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Economic theory
|
Research Institution | Shinshu University (2017-2018) Tokyo University of Science (2016) |
Principal Investigator |
BANDO Keisuke 信州大学, 学術研究院社会科学系, 講師 (50735412)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | マッチング理論 / 安定集合 / 安定マッチング |
Outline of Final Research Achievements |
We analyze the model of a generalized assignment problem in which many sellers trade with many buyers with monetary transfers. In this model, each agent may not has a quasi linear utility function. We investigate equilibrium behavior in the Von Neumann-Morgenstern (vNM) stable set, which is a solution concept proposed in cooperative game theory. We provide an algorithm that finds a vNM stable set under certain conditions. This algorithm can be interpreted as a collusion behavior among buyers (or sellers) in a multi-tem auction.
|
Free Research Field |
ゲーム理論
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では複数の買い手と複数の売り手の間の市場取引を行い、安定集合解を求めるアルゴリズムを新たに提案した。このアルゴリズムは、オークションで財を落札した勝者が財を落札できなかったある特定の敗者に対して金銭移転を行い、入札を控えさせるような交渉を表しており、オークションにおける談合行動が安定的な帰結として実現されうることを示唆している。
|