• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Algebraic cycles and motives with modulus for unipotent algebraic groups

Research Project

  • PDF
Project/Area Number 16K17579
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionJapan Women's University (2018-2021)
Tokyo Denki University (2016-2017)

Principal Investigator

SUGIYAMA Rin  日本女子大学, 理学部, 講師 (20633233)

Project Period (FY) 2016-04-01 – 2022-03-31
Keywords相互層 / 加法群のテンソル積 / モジュラス付き代数的サイクル
Outline of Final Research Achievements

Tensor structures of reciprocity sheaves induced by tensor structures on the category of modulus sheaves with transfers were revealed. Using this I computed concretely the tensor products of the additive groups and the multiplicative groups as reciprocity sheaves. In particular, I computed the tensor product of two copies of the additive group. This is a completely new result, since the theory of motive using the homotopy invariance can not deal with that case.I also gave a description of the Chow group of 0-cycles with modulus for product of curves in terms of the tensor product of its Jacobian varieties.

Free Research Field

数論幾何

Academic Significance and Societal Importance of the Research Achievements

代数多様体のモチーフに関する理論は盛んに研究され続けている理論であり、その中でホモトピー不変性を仮定しないモチーフ理論(モジュラス付きモチーフの理論)は近年発展しているものである。今回の研究成果は、ホモトピー不変でない最も基本的な対象である加法群について、新たな枠組みでの計算を行い、その構造を明らかにした。今後も関連する計算は、モジュラス付きモチーフの振る舞いを明らかにすることへ繋がると思われる。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi