• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Relations of finite multiple polylogarithms and finite multiple zeta values

Research Project

  • PDF
Project/Area Number 16K17583
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionOsaka Institute of Technology

Principal Investigator

Kamano Ken  大阪工業大学, ロボティクス&デザイン工学部, 准教授 (50409611)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywords多重ゼータ値 / 多重ベルヌーイ数
Outline of Final Research Achievements

By using the shuffle relation of finite multiple zeta values, new relations of finite multiple zeta values are obtained . As a special case, this relation gives a certain weighted sum formula for finite multiple zeta values.
A generating function of the number of Lonesum decomposable matrices is explicitly given, and its properties in modulo primes p are also given.
Matiyasevich type formula, which is a convolution formula, for poly-Bernoulli numbers and polynomials are obtained.

Free Research Field

数論

Academic Significance and Societal Importance of the Research Achievements

証明した有限多重ゼータ値の公式は,有限多重ゼータ値が興味深い代数的構造を持つことを示しており,有限多重ゼータ値の今後のさらなる研究の進展に期待できる.
ロンサム分解可能行列は組合せ論的な対象であり,代数的・解析的な側面の多い多重ゼータ値の分野において,新しい見方を提供した.
多重ベルヌーイ数は多重ゼータ値と関係が深く,自明には得られない畳み込み関係式を今回得たことにより,多重ベルヌーイ数がとても素性のよいものであることが示された.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi