• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Finite type invariants and Milnor invariants by clasper theory

Research Project

  • PDF
Project/Area Number 16K17586
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionHiroshima University (2020)
Institute of Physical and Chemical Research (2017-2019)
The University of Tokyo (2016)

Principal Investigator

Kotorii Yuka  広島大学, 先進理工系科学研究科(理), 准教授 (30737143)

Project Period (FY) 2016-04-01 – 2021-03-31
Keywords位相幾何学 / 結び目理論
Outline of Final Research Achievements

A link-homotopy is an equivalence relation on links generated by ambient isotopies and self-crossing changes. I constructed link-homotopy invariants for 4-component links and researched properties of link-homotopy classes of links by the invariants. I also researched properties of link-homotopy classes of handle-body links by making invariants. I also researched geometric properties of Goussarov-Polyak-Viro's finite type invariants on virtual links.

Free Research Field

低次元トポロジー

Academic Significance and Societal Importance of the Research Achievements

絡み目の不変量をクラスパー理論を用いてクラスパーの言葉で記述することで,図式的な計算が可能となり,計算の簡略化や新しい視点を導入することができる.本研究では,絡み目の絡み目ホモトピー不変量をクラスパーを用いて再定式化を与え,そこからさらに新しい不変量を構成した.このように,クラスパーを用いた定式化は,幾何的な視点からの新しい発展が期待される.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi