• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

The study of the entropy solutions of one dimensional 2 times 2 systems of conservation laws

Research Project

  • PDF
Project/Area Number 16K17610
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionNiigata University

Principal Investigator

Ohwa Hiroki  新潟大学, 自然科学系, 准教授 (10549158)

Research Collaborator Sasaki Yoshimasa  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords実解析 / 保存則方程式 / 非線形現象
Outline of Final Research Achievements

In order to find clues to solve the existence and uniqueness of the entropy solutions to the initial value problem for one dimensional 2×2 systems of conservation laws, we proved the existence and uniqueness of the entropy solutions to the initial value problems for a scalar conservation law of similar form to the Temple type, with a flux function which is a smooth function multiplied by a discontinuous coefficient on the spatial location, and for a scalar conservation law with a flux function which is (more generally) discontinuous with respect to the unknown function. Moreover, we proved the continuous dependence in the sense of L^1 on the initial value and the flux of the entropy solutions to the initial value problems for a scalar conservation law (with smooth flux).

Free Research Field

偏微分方程式論

Academic Significance and Societal Importance of the Research Achievements

数理科学の様々な分野において, 各種物理量の時間発展はそれら物理量の保存則方程式から導かれる複数の非線形偏微分方程式(保存則方程式系)で記述される. 保存則方程式系の研究は1950年代から多くの研究者によって行われてきたが, その系統的な結果は未だに得られていない. こうしたことから, 保存則方程式系の研究は今後の発展に期待されており, 学術的に大きな意義を持つ研究課題であると言える.このような学術的背景の中で,本研究課題では,保存則方程式系の初期値問題の一意可解性問題の解決への糸口を探ることを目的として研究を行い,ある一定の成果を得ることができた.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi