• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Study of second order elliptic operators with unbounded coefficients

Research Project

  • PDF
Project/Area Number 16K17619
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionTokyo University of Science

Principal Investigator

SOBAJIMA MOTOHIRO  東京理科大学, 理工学部数学科, 講師 (20760367)

Research Collaborator Metafune Giorgio  
Spina Chiara  
Wakasugi Yuta  
Ikeda Masahiro  
Yoshii Kentarou  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords2階楕円型作用素 / 非有界な係数 / 半線形熱方程式 / 消散型波動方程式 / テスト関数法
Outline of Final Research Achievements

The generation of analytic semigroups, the structure of heat kernel, and the spectrum of second order elliptic operators with unbounded coefficients (with a special structure) in Lp-spaces are established. Also, weighted energy estimates and diffusion phenomena for wave equations with space-dependent damping term are discussed. Moreover, methods for proving blowup phenomena for semilinear heat equations, Schr"odinger equations and damped wave equations are refined. The blowup phenomena for semilinear wave equations with scale-invariant space(time) dependent damping terms are also found.

Free Research Field

偏微分方程式論

Academic Significance and Societal Importance of the Research Achievements

非有界な係数をもつ2階楕円型作用素は様々な自然現象を記述する際に用いられる。この研究は、その現象がどういうものであるかにかかわらず、記述された方程式の型のみから得られる普遍的な性質を読み解くことに用いることができる。この研究によって、特異性をもつ現象で今まで扱いきれていなかった現象を解析できる可能性が高まったと考えている。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi