2018 Fiscal Year Final Research Report
Project/Area Number |
16K17646
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Foundations of mathematics/Applied mathematics
|
Research Institution | Senshu University |
Principal Investigator |
Tsuchiya Shoichi 専修大学, ネットワーク情報学部, 准教授 (10647564)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | Halin graph / HIST / fullerene graph / plane graph / tree |
Outline of Final Research Achievements |
In this research, we aimed to obtain theorems for the existence of a spanning Halin subgraph. For plane triangulations, we proved that there exists an infinite family of 5-connected plane triangulations without a spanning Halin subgraph. On the other hand, we obtained a theorem on forbidden subgraphs which guarantees the existence of a spanning Halin subgraph. This result is the first positive result for the existence of a spanning Halin subgraph in non-trivial graph classes.
|
Free Research Field |
グラフ理論
|
Academic Significance and Societal Importance of the Research Achievements |
グラフ理論では,木や閉路について多くの成果が発表されている.Halin graphの研究は木と閉路によって構成される構造について議論するため,木の研究と閉路の研究を結び付ける新たな研究が創生できる.そのような意味で,本研究は学術的に意義がある.また,辺の数の少ない連結度の高いグラフは,コストを抑えた強度の高い構造と関連があるため,応用面に活用することも可能である.
|