2020 Fiscal Year Final Research Report
Omics reveals nitrogen cycling system with anammox
Project/Area Number |
17H00793
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Modeling and technologies for environmental conservation and remediation
|
Research Institution | The University of Tokyo (2020) Japan Agency for Marine-Earth Science and Technology (2017-2019) |
Principal Investigator |
Takami Hideto 東京大学, 大気海洋研究所, 特任研究員 (70359165)
|
Co-Investigator(Kenkyū-buntansha) |
黒岩 恵 中央大学, 理工学部, 助教 (00761024)
諏訪 裕一 中央大学, 理工学部, 教授 (90154632)
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Keywords | anammoxバクテリア / メタゲノム解析 / メタトランスクリプトーム解析 / 比較ゲノム解析 / Ca. Brocadia pituitae / 亜硝酸酸化菌 / 不完全型脱窒菌 / 生理代謝ポテンシャル |
Outline of Final Research Achievements |
We present the second complete genome of anaerobic ammonium oxidation (anammox) bacterium, Brocadia pituitae, along with those of a nitrite oxidizer and two incomplete denitrifiers from the anammox bacterial community (ABC) metagenome. B. pituitae lacks nitrite reductase genes (nirK and nirS) responsible for this reaction. Comparative genomics of B. pituitae with Kuenenia stuttgartiensis and six other anammox bacteria with nearly complete genomes revealed that their core genome structure contains 1,152 syntenic orthologues. But nitrite reductase genes were absent from the core and these genes were horizontally acquired from multiple lineages. In contrast, at least five hydroxylamine oxidoreductase genes containing another nitrite reductase one were observed in the core. Because many nirS and nirK genes have been detected in the ABC metagenome, B. pituitae presumably utilizes not only NO supplied by the ABC members but also NO and/or NH2OH by self-production for anammox metabolism.
|
Free Research Field |
ゲノム微生物、環境微生物
|
Academic Significance and Societal Importance of the Research Achievements |
嫌気的アンモニア酸化(anammox)と脱窒活性が長期的に維持されている集積バイオリアクターの窒素循環システムに関与すると考えられる未培養の4優先種のゲノム情報と遺伝子発現プロファイル、および反応産物として生成されるガス成分解析結果から、リアクター内の窒素循環モデルを構築した。これにより、anammox細菌と協働する不完全型脱窒菌や亜硝酸酸化菌との機能的関係性の一端を明らかにできたことは学術的に意義深い。また、本成果は、anammox反応を用いた窒素除去リアクターシステムの人為的構築や効率的な運転条件を考える上での指針となり得る点で社会的にも意義深い。
|