• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Development of the NMF based on an action history and questionnaire mixed data for exploratory understanding of a relationship between buying behavior and consumer mind

Research Project

  • PDF
Project/Area Number 17H06779
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Commerce
Research InstitutionKyoto University

Principal Investigator

Abe Hiroyasu  京都大学, 医学研究科, 助教 (40807963)

Project Period (FY) 2017-08-25 – 2019-03-31
Keywords探索的データ解析 / 非負値行列因子分解
Outline of Final Research Achievements

In this study, we developed the new exploratory data analysis method for understanding of a relationship between buying behavior and consumer attribute or mind using action history data, such as buying history or web access, and questionnaire mixed data. The new method is an expansion of the matrix decomposition method that is called nonnegative matrix factorization. We can obtain by the new method some action patterns and characteristics of the some users that did not act according to the patterns. We apply the new method to the real web access log data with user attribute information in a certain shopping website and we confirmed that the new method has potential to get the interpretation as expected. For example, we can grasp a potential needs and identify some users who may not have the potential needs.

Free Research Field

統計学

Academic Significance and Societal Importance of the Research Achievements

全ての要素が0以上の値であるようなデータと,質問紙データを組み合わせた汎用性のあるデータ解析手法を開発したことは,学術的意義があると自負する.一方で,本研究の社会的意義としては,より繊細なマーケティング施策を行うための材料を提供できる点にあると考える.開発手法は,行動パターンによって記述されるユーザセグメントを抽出しつつ,そのセグメントが示すパターン通りに行動をしない特異ユーザも抽出できる.このことは,ウェブページ推薦といった潜在ニーズを掘り起こすための施策において,抽出パターンに沿った施策を十把一絡げに行うのではなく,その特異ユーザに対しては柔軟に対応できることにつながる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi