• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Numerical analysis for SDE and non-colliding stochastic processes

Research Project

  • PDF
Project/Area Number 17H06833
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Basic analysis
Research InstitutionOsaka University

Principal Investigator

Taguchi Dai  大阪大学, 基礎工学研究科, 助教 (70804657)

Research Collaborator Li Libo  
Ngo Hoang-Long  
Naganuma Nobuaki  
Tanaka Akihiro  
Project Period (FY) 2017-08-25 – 2019-03-31
Keywords確率微分方程式 / CIR過程 / Levy過程 / Euler-Maruyama近似
Outline of Final Research Achievements

Recently, CIR processes (Cox-Ingersoll-Ross processes) and CEV processes (constant elasticity of variance processes) are widely used in mathematical finance, and are extended in various directions, such as extending to the Jump type by using the Levy processes. These stochastic processes have some boundary conditions, such as not taking negative values or not staying at the boundary. The research achievements of this study are to introduce a discrete approximation scheme with the same boundary conditions as these stochastic processes, and provide their rate of convergence.

Free Research Field

確率数値解析

Academic Significance and Societal Importance of the Research Achievements

確率微分方程式に対する離散近似はEuler-Maruyama近似が広く用いられるが、対応する確率微分方程式と同様の境界条件を満たすとは限らない。本研究で得られた成果では、対応する確率微分方程式と同様の境界条件を持つ離散近似を構成することができ、近年広く研究されている境界付き確率過程に対する数値解析が可能となる。また、確率微分方程式は楕円型偏微分方程式と深い関係が知られているため、確率論を用いた数値解析(モンテカルロ法)を適用することができる。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi