• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Development of Client-Server-Based Framework for Privacy-Preserving Media Recognition

Research Project

  • PDF
Project/Area Number 17K00235
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Perceptual information processing
Research InstitutionOsaka University

Principal Investigator

NAKAMURA KAZUAKI  大阪大学, 工学研究科, 助教 (10584047)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywordsメディア認識 / パターン認識 / 情報セキュリティ / サーバ・クライアント / 認識器クローン / プライバシー保護 / Model Inversion Attack
Outline of Final Research Achievements

Client-server-based media recognition services, where client users send a media data to the recognition server while the server recognizes it and returns the result, have several risks for leaking sensitive information such as the recognition results, the server's recognition model, its training data, and so on. In this research project, we analyzed how much these risks are urgent and proposed some techniques to avoid or defend against them. The outcomes of this research project mainly include (i) media recognition framework where the recognition results are not disclosed to the server but correctly conveyed to the user, (ii) techniques to prevent and detect unauthorized clones of the server's recognition model, which we call "cloned recognizers", and (iii) techniques to estimate and regenerate a training data of a media recognition model only from the model itself.

Free Research Field

視覚情報処理

Academic Significance and Societal Importance of the Research Achievements

AI技術の普及によりサーバ・クライアント型メディア認識サービスは既に現実のものとなりつつあり,今後の更なる発展が予想される中で,当該サービスを安心安全に運用・利用できないという事態になれば,大きな社会不安を引き起こす可能性が高い.本研究の成果は,そのリスクを低減するとともに,今後も継続して対処法の研究開発が求められることを示唆するものであり,安心安全なサービスの実現に大きく貢献し得る.また,学術的には,本研究の成果によりメディア認識分野・AI分野と情報セキュリティ分野を融合した新たな研究領域が創出される潜在性を持つ.他形態のメディア認識に対しても同様の研究を行う余地は大きく,極めて意義深い.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi