2021 Fiscal Year Final Research Report
Development of search space partitioning and guided local search based on enumeration algorithm for multi-objective discrete optimization
Project/Area Number |
17K00352
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Soft computing
|
Research Institution | Kansai University |
Principal Investigator |
Hanada Yoshiko 関西大学, システム理工学部, 准教授 (30511711)
|
Co-Investigator(Kenkyū-buntansha) |
仲川 勇二 関西大学, 総合情報学部, 教授 (60141925)
折登 由希子 広島大学, 大学院人間社会科学研究科, 准教授 (60364494)
|
Project Period (FY) |
2017-04-01 – 2022-03-31
|
Keywords | 遺伝的アルゴリズム / 多目的最適化 / 局所探索 |
Outline of Final Research Achievements |
In evolutionary multi-objective optimization, which finds Pareto-optimal solutions consisting of a large number of non-dominated solutions, improving the convergence and diversity/uniformity of the solution set is one of most important research issues. In this study, we obtained some important guidelines to enhance both the local search and global search performances of the multi-objective genetic algorithm with dividing the search region on the objective function space to search intensively the partial Pareto front in each region.
|
Free Research Field |
進化計算
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発した多目的遺伝的アルゴリズムは汎用性が高く,設計や意思決定の分野の諸問題への応用が可能である.作成した多目的離散最適化のベンチマーク問題については,現在も規模を拡大しており,真のパレート解集合とともに公開する予定である.これらは今後,多目的最適化における新たな手法を開発する際の探索性能,挙動検証に利用することができ,手法開発の効率の向上に役立つと考えている.
|