2019 Fiscal Year Final Research Report
A Study on Improve the Ability for Self-learning and Ability for Creative Problem Solving to Mathematics.
Project/Area Number |
17K04795
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Education on school subjects and activities
|
Research Institution | Naruto University of Education |
Principal Investigator |
AkITA Miyo 鳴門教育大学, 大学院学校教育研究科, 教授 (80359918)
|
Co-Investigator(Kenkyū-buntansha) |
成川 公昭 鳴門教育大学, 大学院学校教育研究科, 特命教授 (60116639)
齋藤 昇 埼玉学園大学, 人間学部, 教授 (60221256)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | 算数科教育 / 数学科教育 / 自律的学習能力 / 創造的問題解決能力 / 数学固有の知識観 |
Outline of Final Research Achievements |
The purpose of this study is to improve the ability to self-learning and ability for creative problem solving to mathematics. It is a long-standing issue that the students cannot fully utilize the mathematics what they had learned in school mathematics education not only in Japan but around the world. In this research, in order to develop a new teaching and learning model, the following things were done.1) Concepts extraction of common from learning contents of mathematics text books. And structuring of learning contents for plasticize the model. 2) Creation of the construction principle for mathematics education based on a view of knowledge peculiar to mathematics. 3) Development of a mathematics compound teaching material to develop the ability to perceive essential relationships and properties from things. 4) Development of mathematics teaching and learning model to improve the ability to self-learning and ability for creative problem solving to mathematics.
|
Free Research Field |
数学科教育学
|
Academic Significance and Societal Importance of the Research Achievements |
学校現場に、算数・数学に対する自律的学習能力を持ち、数学を活用して創造的に問題解決ができる児童生徒を育成するための具体的な手法を提供できることが、最も大きな研究の意義である。本研究では、算数・数学の指導と学習を困難にする要因と考えられている系統性の強さを、指導や学習の柔軟性を生むための強みにして、新しい数学授業構成原理を構築しており、そこに本研究の特色・独創性がある。一般的に児童生徒が持っている数学は堅くて複雑な教科であるという意識が、数学は自由度が高くて単純な教科であるという意識に変わる授業の実現を可能にするものであり、数学教育に大きな変化をもたらすことができることから、学術的価値は高い。
|