• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

E-polynomials and combinatorics

Research Project

  • PDF
Project/Area Number 17K05164
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKanazawa University

Principal Investigator

Oura Manabu  金沢大学, 数物科学系, 教授 (50343380)

Co-Investigator(Kenkyū-buntansha) 小須田 雅  山梨大学, 大学院総合研究部, 教授 (40291554)
三枝崎 剛  琉球大学, 教育学部, 准教授 (60584068)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords代数的組合せ論 / 不変式論 / モジュラー形式
Outline of Final Research Achievements

We studied algebraic combinatorics widely. We consider the ring generated by the g-th weight enumerators of self-dual and doubly even codes of dn+. It is finitely generated over the complex numbers C and we determined the generators for g=1,2. We gave the relation between the g-th weight enumerators and the complete cycle index of the permutation group obtained from codes. We studied Duursma's zeta polynomial of E-polynomials. We defined the g-th Tutte polynomials and studied its properties. We generalized Ozeki's Jacobi polynomials. We discussed the concept of E-polynomials in classical invariant theory.

Free Research Field

代数的組合せ論

Academic Significance and Societal Importance of the Research Achievements

代数的組合せ論にとどまらず、モジュラー形式の理論への応用・観点を交えた研究を行った。個々の研究について、様々な観点から見ることができ、今後の研究、発展性も与えたと考えている。特に有限と無限の双方向の研究を行っているとみる事ができ、興味深いと思われる。また計算機を本質的に利用しており、この点も強調したい。今後はそれぞれの分野において、更に深く研究を行い、各分野の未解決問題に取り組んだり、新しい研究分野の発見に取り組んでいく。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi