2019 Fiscal Year Final Research Report
Applications of class field theory for curves over local fields
Project/Area Number |
17K05174
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyushu Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | 類体論 / 楕円曲線 / 類数 |
Outline of Final Research Achievements |
The results in this project are mainly the following four: 1. First, I completed the class theory on open curves over local fields (which may has positive characteristic). 2. The lower bound of the class number associated with an elliptic curve over a number field is given by the rank of the Mordell-Weil group of the elliptic curve. 3. For a curve over a p-adic field, when the associated Jacobian variety has a good ordinary reduction, we obtain an explicit computation of the "class group" of the curve. 4. We discussed conditions under which the Somekawa K-group associated with two elliptic curves on a p-adic field becomes p-divisible.
|
Free Research Field |
整数論
|
Academic Significance and Societal Importance of the Research Achievements |
局所体上の曲線に対する類体論そのものは1980年代に完成していたが、付随する「類群」の計算についての結果はこれまでそれほど多くはなかった。今回の研究成果により、こうした「類群」を幾つかの場合は具体的に計算することが分かった。将来的な発展の余地も大きいと思われる。
|