2020 Fiscal Year Final Research Report
A study on automorphic forms of several variables with symmetries of level structure
Project/Area Number |
17K05186
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyoto Sangyo University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2021-03-31
|
Keywords | Borcherds積 / 対称性 / 階層構造 / ヤコビ保型形式 / ジーゲル保型形式 / モジュラー曲線 / 完全再生可能関数 |
Outline of Final Research Achievements |
We investigated on relations between certain symmetries of automorphic forms of several variables and infinite product expansions of Borcherds type. Our goal is to show that a family of automorphic forms with multiplicative symmetries of level structure has an infinite product expansion of Borcherds type. In this study, we showed that a family of Jacobi forms with multiplicative symmetries of level structure has an infinite product expansion. By using this result, we also showed that a family of Siegel modular forms of degree 2 with multiplicative symmetries of level structure has an infinite product expansion. We also proved that a plane curve with a single symmetry of Hecke type is in fact a modular curve, and that completely replicable functions are characterized by multiplicative symmetries of level structure.
|
Free Research Field |
整数論
|
Academic Significance and Societal Importance of the Research Achievements |
多変数保型形式の整数論は近年研究が進んでいるものの、いまだ未解決の問題が多く、研究テーマとして大変興味深い分野である。多変数保型形式の中でも、Borcherds型の無限積展開を持つものは、代数幾何学や数理物理学とも関係して、重要な研究対象である。本研究では、Borcherds型の無限積展開を持つことと、本研究で新しく導入された階層構造を持つHecke型の乗法対称性が同値であることを、ヤコビ保型形式と2次ジーゲル保型形式の場合に証明した。与えられた保型形式がBorcherds型の無限積展開を持つかどうかは、判定が難しい問題だったが、本研究によって、判定する新しい方法が得られた。
|