• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Morita equivalence for two algebras associated with dynamical Yang-Baxter maps

Research Project

  • PDF
Project/Area Number 17K05187
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionHokkaido University

Principal Investigator

SHIBUKAWA Youichi  北海道大学, 理学研究院, 准教授 (90241299)

Project Period (FY) 2017-04-01 – 2024-03-31
Keywordsホップ亜代数 / ダイナミカル・ヤン・バクスター写像
Outline of Final Research Achievements

By means of dynamical Yang-Baxter maps, we constructed Hopf algebroids whose base rings are arbitrary algebras. This result is published in Toyama Mathematical Journal (42, 2021, 51-72). In addition, we succeeded to present a systematic method to construct solutions to the reflection equation associated with the dynamical Yang-Baxter map satisfying suitable conditions. This result will be published in Toyama Mathematical Journal (Volume 44, 2023).

Free Research Field

代数学

Academic Significance and Societal Importance of the Research Achievements

本研究による成果の学術的意義は以下の通りである.(1)base ringが一般の場合に,ホップ亜代数を構成するための十分条件を明らかにした.(2)どんなテンソル圏に対しても適用可能であるような反射方程式の解の構成方法を提示した.(3)ダイナミカル・ヤン・バクスター写像から定まる反射方程式の解を組織的に構成した.(4)クイバー(quiver)のなすテンソル圏における反射方程式の解を構成した.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi