• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Topological types and analytic invariants of complex surface singularities

Research Project

  • PDF
Project/Area Number 17K05216
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionYamagata University

Principal Investigator

Okuma Tomohiro  山形大学, 理学部, 教授 (00300533)

Project Period (FY) 2017-04-01 – 2022-03-31
Keywords2次元特異点 / 幾何種数
Outline of Final Research Achievements

The aim of this research is to study fundamental analytic invariants and the structure of normal surface singularities. For Brieskorn complete intersection singularities, we obtained a formula of the normal reduction number of maximal ideals and classified the elliptic singularities. We gave examples of certain distinguished structures of singularities which are homeomorphic to a Brieskorn complete intersection singularity. For cone singularities, we obtained a simple formula of the normal reduction number. We also introduced elliptic ideals and strongly elliptic ideals and obtained their basic properties.

Free Research Field

複素特異点論

Academic Significance and Societal Importance of the Research Achievements

代数多様体や複素解析空間には特異点が存在する.特異点の性質を捉えることで,それらの深い理解につながることがある.本研究は2次元特異点を対象に,基本的な解析的不変量や特異点の構造について,より詳しい結果を得るとともに,新たな研究課題を見出している.これらの成果はこれからの研究の進展に寄与するものと思われる.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi