• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Research on shadow complexities and geometric structures of 3-manifolds

Research Project

  • PDF
Project/Area Number 17K05254
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionHiroshima University

Principal Investigator

Koda Yuya  広島大学, 先進理工系科学研究科(理), 教授 (20525167)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywords3 次元多様体 / 4 次元多様体 / シャドウ / 双曲体積 / Goeritz 群
Outline of Final Research Achievements

A shadow of a 3-manifold is a 2-skeleton of a 4-manifold bounded by the 3-manifold. In this research project, we focused on the complexity defined by counting the number of vertices of shadows, and we have obtained the following results on the topology and geometry of 3 and 4-manifolds: (1) Classification of closed 4-manifolds of shadow complexity 1; (2) Classification of acyclic 4-manifolds with sphere boundary of shadow complexity at most 2; (3) Classification of hyperbolic links in the 3-sphere admitting a stable map with a single codimension-2 singular fiber. Further, as a related topic, we have obtained various interesting properties the Goeritz groups of Heegaard splittings of 3-manifolds.

Free Research Field

位相幾何学

Academic Significance and Societal Importance of the Research Achievements

空間の数学的モデルである多様体の中でも, 特に低次元 (次元が 4 以下) のものについては, 微分構造と組み合わせ構造が等価であることが知られている. したがって, これらの間のつながりを明示的に記述し, 微分構造に基づいて定義される諸概念から, 計算可能な組み合わせ的な量を引き出すことが原理的に可能である. 本研究課題では, シャドウ複雑度という組み合わせ量を用いて 3 次元多様体の微分構造・幾何構造, 4 次元多様体の微分構造を記述したものであり, 得られた成果は低次元多様体への理解に寄与するものである.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi