2023 Fiscal Year Final Research Report
Shapes of functions, asymptotic behavior and function spaces associated with solutions to nonlinear dispersive equations
Project/Area Number |
17K05311
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical analysis
|
Research Institution | Chiba University |
Principal Investigator |
Sasaki Hironobu 千葉大学, 大学院理学研究院, 准教授 (00568496)
|
Project Period (FY) |
2017-04-01 – 2024-03-31
|
Keywords | 非線型分散型方程式 / 散乱作用素 / ソボレフ空間 |
Outline of Final Research Achievements |
In this study, we consider scattering problems for nonlinear dispersive equations. We obtain the following results: (1) We considered the 3-dim. Klein-Gordon equations whose nonlinearity is cubic, and we proved that the scattering operator maintain the smoothness and decay of the input data. (2) We considered the 2-dim. Klein-Gordon equations whose nonlinearity behaves like u(exp(|u|^2)-1), and we proved that the scattering operator maintain the smoothness and decay of the input data. (3) We considered the semi-relativistic equation whose interaction potential satisfies some suitable conditions, and we proved that the scattering operator maintain the smoothness and decay of the input data.
|
Free Research Field |
偏微分方程式
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で得られた成果を分かりやすく述べると、「入力データとして与えた関数(実験の世界では粒子に相当)が滑らかだったり、遠方で減衰するものであったら、滑らかな非線型相互作用によって変化した出力データも同程度以上の滑らかさや減衰性をもつことを示した」となる。純粋数学的には散乱の逆問題に応用が可能と思われる。また、粒子の実験を行う際の有用なヒントにもなりうる。
|