• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

The study of Scheepers' conjecture on local properties of function spaces and special subsets of reals

Research Project

  • PDF
Project/Area Number 17K05352
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionKanagawa University

Principal Investigator

SAKAI MASAMI  神奈川大学, 理学部, 教授 (60215598)

Project Period (FY) 2017-04-01 – 2024-03-31
Keywords関数空間 / Scheepers予想 / Menger
Outline of Final Research Achievements

The purpose of this study was to solve Scheepers' conjecture on the relation between a topological property of X and a local property of the function space Cp(X) with the topology of pointwise convergence. Concerning Scheepers' conjecture, we obtained the following results. (1) we gave a characterization of X for Cp(X) to be projective Menger, and gave some implications of topological properties appeared in Scheepers' conjecture, (2) we showed that under some weak local property of X and Y, if Cp(X) and Cp(Y) are linearly homeomorphic and X is Menger, the Y is also Menger, where this is a partial answer to Arhangelskii's problem.

Free Research Field

集合論的位相幾何学

Academic Significance and Societal Importance of the Research Achievements

本研究期間ではScheepers予想の最終解決には至らなかったが、周辺の問題の解決に向けてはいくつかの進捗が得られ、今後の研究の進展に寄与すると思われる。特に、研究成果の概要で述べられた(2)の結果は、実数の部分集合の間ではMenger性は関数空間の間の線形同相で保存されることを示し、今後の研究方向を定めるうえで重要と思われる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi