• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Quantitative analyses for dynamic postural instability

Research Project

  • PDF
Project/Area Number 17K10885
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Neurosurgery
Research InstitutionChiba University

Principal Investigator

Higuchi Yoshinori  千葉大学, 大学院医学研究院, 准教授 (00456055)

Co-Investigator(Kenkyū-buntansha) 村田 淳  千葉大学, 医学部附属病院, 准教授 (20344997)
村井 尚之  千葉大学, 医学部附属病院, 講師 (80241967)
池上 史郎  千葉大学, 大学院医学研究院, 助教 (10436389)
Project Period (FY) 2017-04-01 – 2020-03-31
Keywords姿勢安定性 / 重心動揺 / 転倒 / 転倒リスク
Outline of Final Research Achievements

The risk of falling is high in the elderly and neurological diseases, and it is important to establish a system to detect the risk of falls quantitatively. In this study, we constructed a system that quantitatively measures dynamic postural control and applied it to neurological diseases for validation.
In Parkinson's disease, we did not find any correlation between the Modified Falls Efficacy Scale (MFES) or Gait and Falls Questionnaire (GFQ) and parameters of posturography at resting. The degree of axial rotational movement was correlated with MFES, and the ratio of deviation of the center of pressure (antero-posterior direction) to the axial rotational movement was correlated with GFQ. These results demonstrated that the parameters of dynamic posturography were correlated with the clinical scores of falling and freezing of gait. Dynamic posturographic measurement has a potential to predict the risk of falling quantitatively.

Free Research Field

脳神経外科

Academic Significance and Societal Importance of the Research Achievements

神経疾患,高齢者では転倒リスクは高いと考えられ,転倒を惹き起こすリスクを早期にしかも定量的に発見するシステムの構築は重要と考えられる.これまでの臨床スコアは定性的,もしくは段階的なスコア表示であり,しかも評価者が必要であること,比較的時間を要する.本研究では,転倒を来しやすいパーキンソン病などの神経疾患における動的重心動揺の定量的測定の可能性見いだした.今後,比較的短時間でできる客観的定量的な転倒リスクの評価を目指す.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi