• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Characterization of homogeneous varieties by means of tangent bundles

Research Project

  • PDF
Project/Area Number 17K14153
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionChuo University (2020)
Saitama University (2017-2019)

Principal Investigator

Watanabe Kiwamu  中央大学, 理工学部, 准教授 (20638176)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywords接束 / ネフ / 等質多様体 / 有理曲線 / ファノ多様体 / 有理連結多様体
Outline of Final Research Achievements

I studied projective varieties from the viewpoint of the positivity of the tangent bundle. I wrote three papers on the Campana-Peternell conjecture "Any Fano manifold with nef tangent bundle is homogeneous". I also studied more wide class of varieties. As a consequence, I obtained a structure theorem of varieties with nef second exterior power of the tangent bundle and a positive characteristic analogue of the Demailly-Peternell-Scheneider theorem.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

4年間の研究期間のうちに,5本の論文を執筆し,うち4本が出版された.とりわけ,研究課題であるカンパーナ・ペターネル予想(以下CP予想)に関連し,F4(4)型の等質多様体の特徴付けを得た.また,余指数3のファノ多様体に対してCP予想を肯定的に解決した.CP予想の解決には届かなかったが,その一方で,接束の二階外積がネフである多様体の構造定理と正標数の体上定義されたネフ接束を持つ射影多様体の構造定理を得た.CP予想より広い枠組みで構造定理を得ることができたことで,今後の研究に広がりができた.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi