• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Geometry of orthogonal modular varieties

Research Project

  • PDF
Project/Area Number 17K14158
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionTokyo Institute of Technology

Principal Investigator

Ma Shouhei  東京工業大学, 理学院, 准教授 (80633255)

Project Period (FY) 2017-04-01 – 2021-03-31
Keywords直交型モジュラー多様体
Outline of Final Research Achievements

I studied the birational type of orthogonal modular varieties and the moduli spaces of pointed K3 surfaces. In particular, I proved that most orthogonal modular varieties are of general type in dimension greater than 20. As a byproduct I proved a conjecture of Gritsenko and Nikulin on reflective modular forms. For the moduli spaces of pointed K3 surfaces, I studied the transition point of Kodaira dimension. I also studied some topics related to Borcherds products, such as equivariant Gauss sum, quasi-pullback formula and a new product structure.

Free Research Field

代数幾何

Academic Significance and Societal Importance of the Research Achievements

直交型モジュラー多様体は代数幾何、数論、表現論が交わる豊かな研究対象である。本研究では直交型モジュラー多様体のいくつかの幾何学的性質を研究した。特に高次元でほとんど一般型になるという結果は、「大自然はやはり複雑で奥深い」ということをある意味定量的に示したものと言える。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi