2022 Fiscal Year Final Research Report
Canonical bases in equivariant K-theory and their applications
Project/Area Number |
17K14163
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Algebra
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2023-03-31
|
Keywords | 幾何学的表現論 / シンプレクティック特異点解消 / 標準基底 / 楕円コホモロジー / 楕円量子群 |
Outline of Final Research Achievements |
We defined a notion of canonical bases for equivariant K-theory of conical symplectic resolutions and formulated an analogue of Lusztig's conjecture for modular representation theory of semisimple Lie algebras. We explicitly calculated K-theoretic canonical bases for toric hyper-Kahler manifolds and proved a conjecture of Bezrukavnikov-Okounkov on the existence of real variation of stability conditions in this case. We also found that the equivariant lift of the central charge of the dual canonical bases are given by Euler type integral for GKZ hypergeometric functions over explicit cycles and proved that there exists a Koszul type t-structure on the derived category of equivariant coherent sheaves such that its heart has a graded highest weight category structure. We introduced elliptic analogue of caonical bases for toric hyper-Kahler manifolds and found a new duality of elliptic canonical bases under symplectic duality which cannot be seen at the K-theory level.
|
Free Research Field |
幾何学的表現論
|
Academic Significance and Societal Importance of the Research Achievements |
錐的シンプレクティック特異点解消の代数幾何や表現論に関して既存の予想の類似物を与えるだけでなく、様々な新しく興味深い現象を発見することができた。現在の技術では厳密に扱うことはまだ難しいが、ここで得られた結果は例えばシンプレクティック特異点解消の同変連接層の導来圏という代数幾何的な対象と、そのシンプレクティック双対のループ空間上の超局所偏屈層というシンプレクティック幾何的な対象が結びつくだろうというミラー対称性のような現象や、楕円標準基底の双対性と頂点作用素超代数の双対性に関係があるだろうといった様々な分野を結びつける現象を示唆している点が特に重要であると思われる。
|