• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

On rigidity of foliations on 3-manifolds

Research Project

  • PDF
Project/Area Number 17K14195
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionRitsumeikan University

Principal Investigator

Nozawa Hiraku  立命館大学, 理工学部, 准教授 (80706557)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords葉層構造 / 3次元多様体 / 群作用 / 微分位相幾何 / グラフ理論 / リーマン幾何 / 対称空間 / 剛性理論
Outline of Final Research Achievements

A foliation on a space X is a partition of X into spaces of smaller dimension, which are called leaves. The leaves of foliations wrap around other leaves, and admit interesting geometry. It is known that the classification of taut foliations with 2-dimensional leaves on 3-dimensional spaces has some mysterious finite aspects. However few is known about this finiteness phenomenon in concrete situation. In this research project, we study this finiteness phenomenon in simple and important cases. We constructed new examples of such foliations, and gave classification results of foliations in some cases to make progress toward understanding the finiteness.

Free Research Field

微分位相幾何

Academic Significance and Societal Importance of the Research Achievements

トートな葉層構造とは,直観的にはその葉がシャボン玉の膜のように張り詰めているような葉層構造と考えることができる.このような葉層構造は曲面の上の流れの分類の後に自然に研究され,ガバイやクロンハイマー=ムロフカの研究によって非常に強い有限性を持っていることが知られている.その有限性の理解することは3次元空間の幾何,とくにその空間の許容しうる力学系(流れ)の理解を深めることに繋がり,低次元トポロジーにおいて意義があると考えられる.本研究では,顕著な例においてこの有限性の研究を行い,新たな葉層構造の例を構成し,幾何的な葉層構造の分類をある条件下で与えることで,有限性の理解を進めることができた.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi